Technical Comments

Comment on "U. S. Navy Hydrofoil Craft"

ALEX N. PETROFF*

La Jolla, Calif.

AFTER seeing Table 1 of Ref. 1, one may naturally desire to compare performance of the listed craft. Available data on displacement, shaft horsepower, and maximum speed are related as follows: by definition,

$$\eta_p = T \cdot V / 550 \text{ shp} \tag{1}$$

where

 η_p = net propulsive efficiency

T = thrust, lb

V = velocity, fps

shp = shaft horsepower

At maximum speed, where thrust is equal to drag, Eq. (1) becomes

$$\eta_p = R \cdot V_{\text{max}} / 550 \text{ shp} \tag{1a}$$

where R is the total air and water resistance in pounds. Multiplying Eq. (1a) by the (Δ/R) factor, which is a measure of hydroaerodynamic efficiency,

$$\eta_{\nu}(\Delta/R) = \Delta \cdot \Delta_{\text{max}}/550 \text{ shp}$$
 (2)

Converting speed into knots and displacement into long tons

Table 1 Results of substitution of Ref. 1 data into Eq. (2a)

	1 PCH-1	2 AGEH-1	3 FRESH-1	4 PGH-1	5 PGH-2
Δ_T	120	320	16.7	57	58
shp	6200	28,000	5000^{a}	3150	3100
V_K	4 0+	45+	100	40+	40 +
$\eta_p(\Delta/R)$	5.34+	3.54+	2.30	5.00+	5.16+

a Estimated.

gives

$$\eta_p(\Delta/R) = 6.89 \Delta_T \cdot V_K/\text{shp}$$
 (2a)

where Δ_T = displacement in long tons and V_K = maximum speed in knots. Substitution of data from Ellsworth's Table 1 on displacement, shaft horsepower, and maximum speed into Eq. (2a) gives the results shown in Table 1 of the present Comment.

More meaningful results would ensue if (Δ/R) and (η_p) were presented separately. In order to do so, R must be known explicitly. Unfortunately, R is not listed in Table 1 of Ref. 1. Otherwise, separating the performance of the hydrofoils from the performance of the propulsive systems would help to explain the disappointingly low product of efficiencies shown in columns 2 and 3 of the present table.

It is granted that an experimental craft in a process of development is not expected to attain a high degree of efficiency. Nevertheless, relative or comparative figures, however crude, are of some interest and value as an indication of the potential of the fully developed craft.

Reference

Received December 16, 1967; revision received February 15, 1968.

^{*} Associate Fellow AIAA.

¹ Ellsworth, W. M., "U.S. Navy Hydrofoil Craft," Journal of Hydronautics, Vol. 1, No. 2, Oct. 1967, pp. 66-73.